дома » Занимательная Математика » Состязание мотоциклов

Состязание мотоциклов

ГЛАВА II  ЯЗЫК  АЛГЕБРЫ. Состязание мотоциклов.

ЗАНИМАТЕЛЬНАЯ АЛГЕБРА Я. И. Перельман  ИЗДАНИЕ ДВЕНАДЦАТОЕ СТЕРЕОТИПНОЕ

Под редакцией и с дополнениями В. Г. Болтянского

Сборник Математики

Скачать 11-ое издание ЗАНИМАТЕЛЬНАЯ АЛГЕБРА Я. И. Перельман в формате PDF в хорошем качестве, но без возможности каптирования на Главной странице ЗАНИМАТЕЛЬНАЯ АЛГЕБРА Я. И. Перельман.

Текст для быстрого ознакомления (формулы и чертежи могут отображаться не точно). Качественнее отображаются в PDF файле выше):

Состязание мотоциклов

ЗАДАЧА

При мотоциклетных состязаниях одна из трех
стартовавших одновременно машин, делавшая в час
на 15 км меньше первой и на 3 км больше третьей,
пришла к конечному пункту на 12 минут позже пер-
вой и на 3 минуты раньше третьей. Остановок в пути
не было.

Требуется определить:
а) Как велик участок пути?
б) Как велика скорость каждой машины?
в) Какова продолжительность пробега каждой ма* .
шины? |


 

стр. 65 Состязание мотоциклов. 

РЕШЕНИЕ
Хотя требуется определить семь неизвестных ве-
личин, мы обойдемся при решении задачи только дву-
мя: составим систему двух уравнений с двумя неиз-
вестными.
Обозначим скорость второй машины через х.
Тогда скорость первой выразится через х+15, а треть-
ей — через х—3.
Длину участка пути обозначим буквой у. Тогда
продолжительность пробега обозначится:

стр. 66 Состязание мотоциклов.

стр. 66 Состязание мотоциклов.

стр. 66 Состязание мотоциклов.

или после раскрытия скобок и приведения подобных
членов!
3x—225 = 0,
откуда x=75
Зная х, находим у из первого уравнения:

 

стр. 67 Состязание мотоциклов.

стр. 67 Состязание мотоциклов.

стр. 67 Состязание мотоциклов.

На главную страницу ЗАНИМАТЕЛЬНАЯ АЛГЕБРА Я. И. Перельман
Школьная математика.  Математика в школе.

Около

Comments

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*
*

Статистика


Яндекс.Метрика